

Ein geschlossener Kreis der Umwelt zuliebe.

Unternehmensgruppe Horn & Co.

Gewinnung und Aufbereitung im Bereich der Stahlindustrie, Glasindustrie, NE-Metallindustrie, Kalk- und Zementindustrie, chemische Industrie

Aufbereitung und Verwertung feuerfester Ausbruchstoffe

Neutrales und akkreditiertes Prüflabor im Bereich analytischer Problemlösungen

Vertrieb feuerfester Massen, Körnungen und metallurgischer Zuschlagstoffe

Ausbruch beim Kunden durch unsere Dienstleistungsunternehmen

Wiederverwertung durch den Kunden

Durchdachte Lösungen und langjährige Erfahrung.

Die Unternehmensgruppe Horn & Co. arbeitet in den Bereichen Aufbereitung, Entsorgung, Kontrolle, Analyse und Vertrieb in der Stahlindustrie, Glasindustrie, NE-Metallindustrie, Kalk- und Zementindustrie sowie der chemischen Industrie. Als funktionierendes Netzwerk aus acht eigenständigen Firmen verfolgt sie das Ziel, einen geschlossenen Materialkreislauf im Rahmen der Rohstoffwiederverwertung zu realisieren. Dabei arbeitet die Unternehmensgruppe Horn & Co. präzise wie ein Uhrwerk, eng verzahnt, logisch aufeinander aufbauend und abgestimmt bis ins Detail.

Horn & Co., der Recyclingexperte seit 1922.

Eisen- & Stein-Gesellschaft mbH Horn & Co.

Mineralmahlwerk Westerwald Horn GmbH & Co. KG

HuK Umweltlabor GmbH

Rhebinol GmbH Hochfeuerfeste Materialien

Horn & Co. Polska Sp. z o.o. Horn & Co.

Minerals & Metals Recovering Mireco AB

Mireco SARL

Horn & Co. Luxembourg SARL

Feuerfestregenerate

Die Historie unserer Feuerfestregenerate beginnt bei der Sortierung von Ausbruchmaterialien. Diese werden an mehreren Standorten mittels stationärer oder mobiler Sortieranlagen von hochqualifiziertem und erfahrenem Personal manuell sortiert. Ergänzend kommt eine innovative Sortierung mit Unterstützung eines Lasersystems zum Tragen, welche die Ausbeute erhöht und eine feinere Aufteilung bezüglich qualitativer Abstufungen erlaubt. Durch das Brechen werden vorzerkleinerte Regenerate auf die gewünschte Korngröße gebracht.

Über Backenbrecher, Prallmühlen, Kegelbrecher, Glattwalzwerke und Siebmaschinen können Materialien mit einer maximalen Aufgabekorngröße von 1000 mm in kleinere Brocken und Standardkörnungen gebrochen und vermahlen werden.

Alle mineralischen Vor- und Endprodukte bis etwa 15 mm können in unserer Trocknungsanlage getrocknet werden. Üblicherweise erreichen wir eine Restfeuchte von < 0,3 %. Die getrockneten Erzeugnisse werden entsprechend ihrer Beschaffenheit, ihres Verwendungszwecks und ihrer Kundenanforderungen verpackt. Der Versand erfolgt lose, im Silo, in Big Bags, in Papiersäcken und PE-Säcken.

Da es sich bei unseren Produkten um Regenerate handelt, kann es bei den Analysen zu Schwankungen kommen. Alle angegebenen Werte stellen Orientierungswerte dar und beziehen sich auf geglühte Substanzen.

Horn GmbH & Co. KG

	Produkt	Seite	MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂ %	Cr ₂ O ₃ %	ZrO ₂ %	C %
ı	Magnesia R 92	10	92,0	2,0	2,0	1,0	2,0	-	0,5	-
ı	Mag-Carbon R 92A2	8	92,0	2,0	1,5	2,0	2,0	-		10,0
ı	Mag-Carbon R 90A3	7	90,0	1,6	1,5	3,0	1,0	-		4,0
ı	Mag-Carbon R 90A6	8	90,0	1,5	1,0	6,0	1,5	-	-	10,0
ı	Magnesia R 90	9	90,0	2,0	1,5	1,5	3,5	-	-	-
ı	Mag-Carbon R 86A9	7	86,0	2,0	1,5	8,5	2,0	-	-	10,0
ı	Magnesia-Spinell R 85A7	11	85,0	2,0	2,0	7,0	1,5	-	-	-
ı	Magnesia R 82F7	9	82,0	4,0	7,0	2,5	1,8	-	-	-
ı	Magnesia-Zirkon R 75Z9	12	75,0	2,0	1,0	2,0	8,0	-	9,0	-
ı	Magnesia-Forsterit R 68	11	68,0	2,5	9,0	2,0	15,0	2,0	-	-
ı	Magnesia-Chrom R 59Cr18	10	59,0	2,0	12,0	6,0	3,0	18,0	-	-
ı	Forsterit R	6	50,0	1,0	6,0	5,0	35,0	0,5	-	-
	Dolomit R	6	35,0	55,0	3,0	3,0	4,0	-	-	-

Produkt	Seite	Al ₂ O ₃	SiO ₂	CaO %	Fe ₂ O ₃	ZrO ₂	TiO ₂	MgO %	Na ₂ O+K ₂ O	SiC %	Cr ₂ O ₃	C %
Beta-Tonerde R	17	95,0	0,5	-	-	-	-	-	4,0	-	-	-
Korund-Spinell R	19	93,5	0,6	0,3	0,2	_	0,1	5,0	-		.	
Korund R 88	19	88,0	9,0	0,2	0,5	_	0,7	-	0,5			
Chromkorundschlacke R	17	86,0	0,2	0,5	0,1	_		0,5	2,5		10,0	
Alu-Carbon R 82Z6	13	82,0	7,5	0,6	0,4	6,0	0,2	1,7	0,3			5,0
Bauxit R 79	16	79,0	14,0	1,0	1,8	-	2,5	0,7	0,4		-	
Alu-Carbon R 77	12	77,0	16,0	0,6	1,0	-	<u>.</u>	2,0			_	8,5
Bauxit R 76	16	76,0	14,5	0,6	2,8	_	3,3	0,4	0,5		-	
Mullit R	20	75,0	24,0	_	0,3	_	0,2	_	0,5		-	
ASC R 68	14	68,0	6,0	3,0	2,0	_	1,5	1,0	_	10,0	_	
Andalusit R 61	14	61,0	35,0	0,3	1,3	_	0,6	0,6	0,6		-	
Andalusit R 59	13	59,0	34,0	0,8	2,7	-	0,8	1,0	0,6		-	
AZS R Z30N4	15	50,0	14,0	_	_	30,0	-	0,3	4,0		-	
AZS R Z35	15	48,0	14,0	-	0,3	35,0	-	-	2,3		-	
Schamotte R 44	21	44,0	48,0	-	0,9	-	-	-	4,8		-	
Feuerleichtstein R	18	40,0	51,0	0,8	3,0	-	-	1,0	3,2		-	
Schamotte R 35	20	35,0	54,0	-	2,0	-	2,5	1,5	2,0		-	
SiC R 70	21	4,5	18,5	0,5	0,5	-	0,2	-	1,0	74,0	-	
Kohlenstoff R	18	-	-	-	-	-	-	-	-		-	85,0

Feuerfestregenerate

Die Historie unserer Feuerfestregenerate beginnt bei der Sortierung von Ausbruchmaterialien. Diese werden an mehreren Standorten mittels stationärer oder mobiler Sortieranlagen von hochqualifiziertem und erfahrenem Personal manuell sortiert. Ergänzend kommt eine innovative Sortierung mit Unterstützung eines Lasersystems zum Tragen, welche die Ausbeute erhöht und eine feinere Aufteilung bezüglich qualitativer Abstufungen erlaubt. Durch das Brechen werden vorzerkleinerte Regenerate auf die gewünschte Korngröße gebracht.

Über Backenbrecher, Prallmühlen, Kegelbrecher, Glattwalzwerke und Siebmaschinen können Materialien mit einer maximalen Aufgabekorngröße von 1000 mm in kleinere Brocken und Standardkörnungen gebrochen und vermahlen werden.

Alle mineralischen Vor- und Endprodukte bis etwa 15 mm können in unserer Trocknungsanlage getrocknet werden. Üblicherweise erreichen wir eine Restfeuchte von < 0,3 %. Die getrockneten Erzeugnisse werden entsprechend ihrer Beschaffenheit, ihres Verwendungszwecks und ihrer Kundenanforderungen verpackt. Der Versand erfolgt lose, im Silo, in Big Bags, in Papiersäcken und PE-Säcken.

Da es sich bei unseren Produkten um Regenerate handelt, kann es bei den Analysen zu Schwankungen kommen. Alle angegebenen Werte stellen Orientierungswerte dar und beziehen sich auf geglühte Substanzen.

Dolomit R

Rohstoffbasis

Gebrannte Dolomitsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Schleudermassen, Stampfmassen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
35,0	55,0	3,0	3,0	4,0

 $\hbox{(Stand 05/2012 - a ktuelle Werte auf www.horn-co.de)} \ \ \hbox{Die Verf\"{u}gbarkeit des Produkts ist im Einzelfall anzufragen.}$

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Forsterit R

Rohstoffbasis

Forsteritsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Schlackenkübelspritzmassen, Neusteine

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	Cr ₂ O ₃
50,0	1,0	6,0	5,0	35,0	0,5

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Mag-Carbon R 86A9

Rohstoffbasis

Magcarbonsteine mit Antioxidantien

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine, Hinterfüllmassen für Konverter und Pfannen, Spritz- und Stampfmassen für Konverter und Pfannen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	C %
86,0	2,0	1,5	8,5	2,0	10,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Mag-Carbon R 90A3

Rohstoffbasis

Magnesitische Schieberplatten

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine, Hinterfüllmassen für Konverter und Pfannen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂ %	c %
90,0	1,6	1,5	3,0	1,0	4,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Mag-Carbon R 90A6

Rohstoffbasis

Magcarbonsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine, Hinterfüllmassen, Konverterpflegemassen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂	C %
90,0	1,5	1,0	6,0	1,5	10,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Mag-Carbon R 92A2

Rohstoffbasis

Magcarbonsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	c %
92,0	2,0	1,5	2,0	2,0	10,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Magnesia R 82F7

Rohstoffbasis

Eisenreiche Magnesitsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂
82,0	4,0	7,0	2,5	1,8

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen. Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Magnesia R 90

Rohstoffbasis

Magnesitsteine und Fertigteile

Herkunft

Glas-, Stahlindustrie

Anwendungsbeispiele

Hinterfüllmassen, Spritzmassen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂ %
90,0	2,0	1,5	1,5	3,5

Magnesia R 92

Rohstoffbasis

Kohlenstofffreie Magnesitsteine

Herkunft

Glasindustrie

Anwendungsbeispiele

Spritzmassen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	ZrO ₂ %
92,0	2,0	2,0	1,0	2,0	0,5

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

 $(Stand\ 05/2012\ -\ aktuelle\ Werte\ auf\ www.horn-co.de)\ Die\ Verfügbarkeit\ des\ Produkts\ ist\ im\ Einzelfall\ anzufragen.$

Magnesia-Chrom R 59Cr18

Rohstoffbasis

Magnesiachromsteine

Herkunft

Stahl-, Zement-, NE-Metallindustrie

Anwendungsbeispiele

Pflegemassen für RH-Anlagen, E-Öfen, Stahlpfannen, Neusteine

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂ %	Cr ₂ O ₃ %
59,0	2,0	12,0	6,0	3,0	18,0

Magnesia-Forsterit R 68

Rohstoffbasis

Magnesiasteine, Forsteritsteine

Herkunft

Wärmeöfen

Anwendungsbeispiele

Pflegemassen für RH-Anlagen, E-Öfen, Stahlpfannen, Konverter, Mörtel, Spritz- und Rieselmassen Tundish, Neusteine

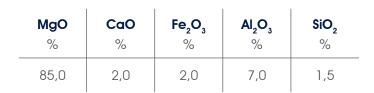
MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂ %	Cr ₂ O ₃ %
68,0	2,5	9,0	2,0	15,0	2,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Magnesia-Spinell R 85A7

Rohstoffbasis


Magnesiaspinellsteine

Herkunft

Zementindustrie

Anwendungsbeispiele

Spritzmassen für Zement-, Kalkindustrie und NE-Metallindustrie

Magnesia-Zirkon R 75Z9

Rohstoffbasis

Magnesiazirkonsteine

Herkunft

Glasindustrie

Anwendungsbeispiele

Hinterfüllmassen

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃ %	SiO ₂	ZrO ₂
75,0	2,0	1,0	2,0	8,0	9,0

 $(Stand\ 05/2012\ -\ aktuelle\ Werte\ auf\ www.horn-co.de)\ Die\ Verfügbarkeit\ des\ Produkts\ ist\ im\ Einzelfall\ anzufragen.$

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Alu-Carbon R 77

Rohstoffbasis

Kohlenstoffhaltige Hochtonerdeprodukte

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine, Stichlochmassen, Hinterfüllmassen

Al ₂ O ₃ %	SiO ₂	CaO %	Fe ₂ O ₃	MgO %	C %
77,0	16,0	0,6	1,0	2,0	8,5

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Mineralmahlwerk Westerwald. Horn GmbH & Co. KG

Alu-Carbon R 82Z6

Rohstoffbasis

Schieberplatten

Herkunft

Stahlindustrie

Anwendungsbeispiele

Spritz- und Gießmassen für Hochofenrinnen, Gießereien, Pfannenrand, Deckelherzen

Al ₂ O ₃ %	SiO ₂	CaO %	Fe ₂ O ₃	ZrO ₂ %	TiO ₂	MgO %	Na ₂ O+K ₂ O %	c %
82,0	7,5	0,6	0,4	6,0	0,2	1,7	0,3	5,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Andalusit R 59

Rohstoffbasis

Andalusitsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerbetone, Stampfmassen, Mörtel

Al ₂ O ₃ %	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂	MgO %	Na ₂ O+K ₂ O %
59,0	34,0	0,8	2,7	0,8	1,0	0,6

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Andalusit R 61

Rohstoffbasis

Andalusitsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine, Feuerbetone, Stampfmassen, Mörtel

Al ₂ O ₃	SiO ₂	CaO	Fe ₂ O ₃	TiO ₂	MgO	Na ₂ O+K ₂ O
%	%	%	%	%	%	%
61,0	35,0	0,3	1,3	0,6	0,6	0,6

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

ASC R 68

Rohstoffbasis

SiC-haltige Hochtonerdebetone

Herkunft

Stahlindustrie

Anwendungsbeispiele

Spritz-, Gieß- und Stampfmassen für Hochofenrinnen

Al ₂ O ₃ %	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂	MgO %	SiC %
68,0	6,0	3,0	2,0	1,5	1,0	10,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Mineralmahlwerk Westerwold Horn GmbH & Co. KG

AZS R Z30N4

Rohstoffbasis

Alumina-Zirkonia-Silika Steine

Herkunft

Glasindustrie

Anwendungsbeispiele

Spritzmassen für Zementindustrie

Al ₂ O ₃ %	SiO ₂	ZrO ₂	MgO %	Na ₂ O %
50,0	14,0	30,0	0,3	4,0

 $\hbox{(Stand 05/2012 - a ktuelle Werte auf www.horn-co.de)} \ \hbox{Die Verf\"{u}gbarkeit des Produkts ist im Einzelfall anzufragen.}$

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

AZS R Z35

Rohstoffbasis

ZAC-Bruch

Herkunft

Glasindustrie

Anwendungsbeispiele

Spritzmassen, Gießmassen (abriebfest)

Al ₂ O %	3	SiO ₂ %	Fe ₂ O ₃ %	ZrO ₂ %	Na ₂ O+K ₂ O %
48,0)	14,0	0,3	35,0	2,3

 $(Stand\ 05/2012\ -\ aktuelle\ Werte\ auf\ www.horn-co.de)\ Die\ Verfügbarkeit\ des\ Produkts\ ist\ im\ Einzelfall\ anzufragen.$

Bauxit R 76

Rohstoffbasis

Bauxitsteine

Herkunft

Stahlindustrie (Roheisen)

Anwendungsbeispiele

Betone und Stampfmassen für verschiedene Anwendungen, Hinterfüllmassen

Al ₂ O ₃	SiO ₂	CaO	Fe ₂ O ₃	TiO ₂	MgO	Na ₂ O+K ₂ O
%	%	%	%	%	%	%
76,0	14,5	0,6	2,8	3,3	0,4	0,5

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen. Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Bauxit R 79

Rohstoffbasis

Bauxitsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Neusteine, Hinterfüllmassen für Stahlpfannen, Schmiermassen für Tundishdauerfutter, Spritz- und Pflegemassen für Stahl-, Zement- und Kalkindustrie

Al ₂ O ₃ %	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂	MgO %	Na ₂ O+K ₂ O %
79,0	14,0	1,0	1,8	2,5	0,7	0,4

Beta-Tonerde R

Rohstoffbasis

Schmelzgegossenes Aluminiumoxid

Herkunft

Glasindustrie

Anwendungsbeispiele

Feuerbetone

Al_2O_3	SiO ₂	Na ₂ O+K ₂ O
%	%	%
95,0	0,5	4,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen. Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Chromkorundschlacke R

Rohstoffbasis

Chromkorundschlacke

Herkunft

Herstellung von metallischem Chrom

Anwendungsbeispiele

Gießmassen für Hochofenrinnen

Al ₂ O ₃ %	Cr ₂ O ₃	SiO ₂ %	CaO %	Fe ₂ O ₃	MgO %	Na ₂ O+K ₂ O %
86,0	10,0	0,2	0,5	0,1	0,5	2,5

Feuerleichtstein R

Rohstoffbasis

Feuerleichtsteine

Herkunft

Glas-, Stahlindustrie

Anwendungsbeispiele

Neusteine, Feuerleichtmassen

Al ₂ O ₃ %	SiO ₂ %	CaO %	Fe ₂ O ₃	MgO %	Na ₂ O+K ₂ O
40,0	51,0	0,8	3,0	1,0	3,2

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen. Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Kohlenstoff R

Rohstoffbasis

Kohlenstoffsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Stichlochmassen, Aufkohlungsmittel

Kohlenstoffgehalt

85,0 %

Korund R 88

Rohstoffbasis

Keramisch gebundene Schleifscheiben

Herkunft

Metallbearbeitende Industrie

Anwendungsbeispiele

Neusteine

Al ₂ O ₃ %	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂ %	Na ₂ O+K ₂ O %
88,0	9,0	0,2	0,5	0,7	0,5

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Korund-Spinell R

Rohstoffbasis

Korundspinellsteine

Herkunft

Stahlindustrie

Anwendungsbeispiele

Feuerbetone

Al ₂	_	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂ %	MgO %
93	5,5	0,6	0,3	0,2	0,1	5,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Mullit R

Rohstoffbasis

Mullitsteine

Herkunft

Glasindustrie

Anwendungsbeispiele

Neusteine

Al ₂ O ₃ %	SiO ₂	Fe ₂ O ₃	TiO ₂	Na ₂ O+K ₂ O
75,0	24,0	0,3	0,2	0,5

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

Schamotte R 35

Rohstoffbasis

Schamottesteine

Herkunft

Stahl-, Zement-, Glas-, NE-Metallindustrie

Anwendungsbeispiele

Neusteine, Feuerbetone

Al ₂ O ₃ %	SiO ₂	Fe ₂ O ₃	TiO ₂	MgO %	K₂O %
35,0	54,0	2,0	2,5	1,5	2,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen.

Schamotte R 44

Rohstoffbasis

Isolatorenporzellan

Herkunft

Isolatoren

Anwendungsbeispiele

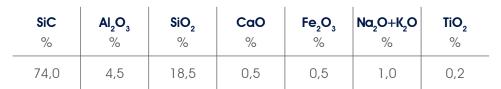
Feuerbetone (auch CO-beständig)

Al ₂ O ₃ %	SiO ₂	Fe ₂ O ₃	K₂O %
44,0	48,0	0,9	4,8

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) Die Verfügbarkeit des Produkts ist im Einzelfall anzufragen. Informationen zu lieferbaren Körnungen und Lieferformen siehe Seite 41-42.

SiC R 70

Rohstoffbasis


SiC-Steine/Bauteile

Herkunft

Fe- und NE-Metallindustrie, Metallbearbeitende Industrie, Keramikindustrie

Anwendungsbeispiele

Gieß- und Spritzmassen für Hochofenrinnen, Gießereien, Stichlochmassen

Metallurgische Reagenzien

Sorgfältig aufbereitete gebrauchte Feuerfestmaterialien bilden zusammen mit handelsüblichen Primärrohstoffen die Basis für ein breites Spektrum an metallurgischen Reagenzien.

Sie dienen der Schlackenbildung, der Schlackenverflüssigung und der Beeinflussung der Schlackenzusammensetzung in allen Bereichen der Roheisen- und Stahlherstellung.

In Abstimmung mit den Verbrauchern werden diese Erzeugnisse im Hinblick auf eine ausreichende Verfügbarkeit und qualitätsgerechte Zusammensetzung konzipiert. Dabei sind vielfältige Anforderungen der Kunden bezüglich eines sparsamen und kostengünstigen Einsatzes zu berücksichtigen, aber auch Aspekte der Verwertung oder Umweltverträglichkeit der Schlacken fließen mit ein. Im Auftrag unserer Kunden erschließen wir dabei kontinuierlich neue Rohstoffquellen und Anwendungsbereiche.

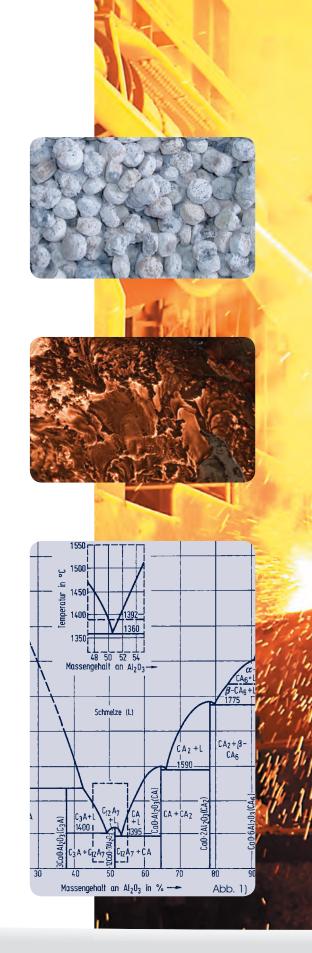


Abb. 1) Quelle: "Metallurgie der Stahlherstellung" von Franz Oeters, im Springer Verlag, Berlin (1989)

MgO 55

Rohstoffbasis

Magnesia- und Dolomit-Steine

Anwendungsbeispiele

Schlackenkonditionierer

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
55,0	20,0	5,0	10,0	5,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.

MgO 75

Rohstoffbasis

Magnesitregenerate

Anwendungsbeispiele

Schlackenkonditionierer

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	c %
75,0	6,0	4,0	5,0	6,0	7,0

MgO 80

Rohstoffbasis

Magnesiterzeugnisse

Anwendungsbeispiele

Körniger feuerfester Rohstoff, Schlackenkonditionierer

MgO %	CaO %	Fe ₂ O ₃ %	Al ₂ O ₃	SiO ₂	C %
80,0	4,0	3,0	3,5	6,0	8,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.

Rhecal 10

Rohstoffbasis

Gemisch Kalk-Dolomit-Flußspat

Anwendungsbeispiele

Schlackenbildner

MgO %	CaO %	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	CaF ₂
5,0	15,0	1,5	55,0	10,0	10,0

TE 80

Rohstoffbasis

Tonerderegenerat

Anwendungsbeispiele

Schlackenverflüssiger

Al ₂ O ₃	CaO %	Fe ₂ O ₃	MgO %	SiO ₂	TiO ₂
78,0	2,0	2,5	3,0	11,0	2,0

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.

TE 85

Rohstoffbasis

Tonerderegenerat

Anwendungsbeispiele

Schlackenbildner Sekundärmetallurgie

Al ₂ O ₃ %	Fe ₂ O ₃	MgO %	SiO ₂	TiO ₂	c %
85,0	0,7	1,4	8,8	2,0	4,0

TE 90

Rohstoffbasis

Tonerderegenerat

Anwendungsbeispiele

Sekundärmetallurgie, Schlackenbildner

Al ₂ O ₃ %	CaO %	Fe ₂ O ₃	MgO %	SiO ₂	C %
90,0	2,3	0,8	4,0	1,8	< 0,2

 $\hbox{(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.}\\$

Rhecal 60

Rohstoffbasis

Kalk-Tonerderegenerat-Gemisch

Anwendungsbeispiele

Synthetische Schlacke

Al ₂ O ₃ %	CaO %	Fe ₂ O ₃	MgO %	SiO ₂	Cr ₂ O ₃ %
61,0	34,0	0,2	0,5	0,5	3,5

Rhecal A75

Rohstoffbasis

Vorgeschmolzene Schlacke

Anwendungsbeispiele

Synthetische Schlacke

Al ₂ O ₃ %	CaO %	Fe ₂ O ₃	MgO %	SiO ₂	Cr ₂ O ₃
75,0	18,0	0,1	0,4	0,4	4,0

 $\hbox{(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.}\\$

Rhecal A58M29S6

Rohstoffbasis

Alumina- und Magnesia-Regenerate

Anwendungsbeispiele

Schlackenverflüssiger, Schlackenkonditionierer

MgO	CaO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
%	%	%	%	%
29,0	1,5	1,5	58,0	6,0

Rhecal 40

Rohstoffbasis

Vorgeschmolzene Schlacke

Anwendungsbeispiele

Synthetische Schlacke

Al ₂ O ₃	CaO %	CaF ₂ %	Fe ₂ O ₃	MgO %	SiO ₂
20,0	30,0	40,0	0,5	3,0	5,0

Feuerbetone

Massen

Je nach Rohstoffbasis findet die Herstellung unserer feuerfesten Massen in zwei Werken auf getrennten Produktionslinien statt.

Verarbeitet werden handelsübliche jungfräuliche Magnesite und Tonerden sowie speziell aufbereitete Körnungen aus basischen und tonerdehaltigen Regeneraten.

Die Konzipierung unserer Produkte, wie z.B. Kornaufbau und Bindesystem betreffend, erfolgt in enger Zusammenarbeit mit dem jeweiligen Anwender.

Der Einsatz sowie der Anteil an tonerdehaltigen und basischen Regeneraten in unseren Produkten richtet sich im Wesentlichen nach dem jeweiligen Anforderungsprofil und wird im Einzelfall mit unseren Kunden abgestimmt. Unsere Produktpalette umfasst somit Hochwertmassen auf Basis Tabulartonerde, Bauxit und Sintermagnesit als auch deren Varianten, welche anteilig oder gänzlich mit Alternativrohstoffen produziert werden.

Flexibilität und Optimierung des Produkts im Sinne des Kunden sind damit in hohem Maße gewährleistet.


Die auf den folgenden Seiten aufgeführten Produkte stellen ledigleich eine Auswahl unseres Gesamtsortiments dar.

Hineral manusers Rhebinol GmbH feste Materialien

Spritz- und Schleudermassen

Rhemagun MA-IV CS

Magnesitbasis

Anwendung

E-Öfen, Stahlgießpfannen, Verteiler, Schlackenkübel, NE-Metallindustrie

Anwendungstemperatur

> 1600 °C

	Bindung	MgO %	SiO ₂ %	CaO %	Cr ₂ O ₃ %	Fe ₂ O ₃ %	Al ₂ O ₃ %	Anwen-dungsbsp.
Rhemagun MA-IV CS	chemisch	92,0	3,5	2,0	1,5	1,0	0,5	E-Öfen, NE- Metallindustrie
Rhemagun VN-S 90/95	chemisch	89,0	4,0	1,8	-	1,3	1,0	E-Öfen
Rhemagun MA-IV 90/95	chemisch	86,0	7,0	2,0	-	1,0	2,0	E-Öfen
Schleudermasse M	keramisch	85,0	4,0	2,0	-	4,5	2,0	E-Öfen
Schleudermasse MCR	keramisch	68,0	7,0	1,0	9,0	12,0	3,0	E-Öfen
Rhemagun TSWK	chemisch	67,0	20,0	3,0	-	5,0	4,0	Verteiler, Schlackenkübel
Rhemagun C4	anorganisch- chemisch	63,0	5,5	2,5	13,0	9,0	5,0	Stahlpfannen

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.

Rhenit SP-CH

Tonerdebasis

Anwendung

Pfannendeckel, Trockenkammern, Schlackenkammern, Pfannenschilde, Gießgruben, Spritzschutz, Hitzeschutz

Anwendungstemperatur

1000 °C - 1650 °C

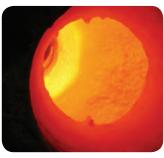
	Bindung	Al ₂ O ₃	SiO ₂ %	CaO %	Fe ₂ O ₃	TiO ₂	Anwendungs- beispiele
Rhenit SP 87 L	hydraulisch- keramisch	87,0	4,0	7,0	0,4	0,8	Deckel, z. B. VOD Anlage
Rhenit ISO 78	hydraulisch- chemisch	78,0	9,0	6,0	2,0	3,5	Trockenkammern, allgemeine Anwendungen
Rhenit SP-KM	hydraulisch	77,0	8,0	9,0	1,5	3,0	Schlackenkammern
Rhenit SP-CH	hydraulisch	72,0	15,0	6,5	1,7	2,5	Pfannenschilde, Pfannendeckel
Rhenit SP 47 ISO	hydraulisch	47,0	40,0	9,0	3,0	-	Gießgruben, Schlackenkammern
Rhenit SP L10	hydraulisch	37,0	48,0	8,5	3,0	-	Spritzschutz, Hitzeschutz

Feuerbetone

Rhenit TK4

Vibrationsmassen

Anwendung


Lochsteine, Spüler, Kipprinnen, Tundish-Dauerfutter, Gießpfannen, Schlackenkammerwände, Fertigteile, Pfannendeckel

Anwendungstemperatur

1650 °C - 1750 °C

	Bindung	Al ₂ O ₃	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂	Anwendungs- beispiele
Rhenit 95 M	hydraulisch	96,8	0,1	2,5	-	-	Lochsteine, Spüler
Rhenit A0/G	hydraulisch	84,0	7,0	3,5	1,3	3,1	NE-Metallindustrie, Kipprinnen
Rhenit TK4	hydraulisch	83,0	10,0	1,8	1,3	2,9	Tundish-Dauerfutter
Rhenit 80 G	hydraulisch	80,0	13,7	1,5	1,1	2,5	Gießpfannen (Schnabel oder Rand)
Rhenit KBS	hydraulisch	80,0	9,5	5,0	1,3	2,8	Schlackenkammerwände, Fertigteile
Rhenit 76 N	hydraulisch	76,0	18,0	1,5	1,5	2,5	VOD-Deckel, Pfannendeckel

Gießmassen

Anwendung

E-Öfen, Deckelherzen, VOD-Deckel, Schlackenkammern, Böden Arbeitsfläche, Tiegeldeckel, Kübeldeckel

Anwendungstemperatur

1400 C° - 1700 °C

Rhenit 70 CN

	Bindung	Al ₂ O ₃	SiO ₂	CaO %	Fe ₂ O ₃	TiO ₂ %	Anwendungs- beispiele
Rhenit 70 CN	hydraulisch	84,0	6,0	5,0	1,5	3,0	E-Öfen Deckelherzen, VOD-Deckel
Rhenit CK 14	hydraulisch	76,0	9,0	5,5	1,0	0,8	Schlackenkammern, Böden Arbeitsfläche
Rhenit 43 RW	hydraulisch	44,0	44,0	5,5	1,5	-	Tiegel- , Kübeldeckel

Reparaturmassen

Rhemag CPS

Anwendung

E-Öfen Ausmauerungen, Pfannenschnauzen, Abstichrinnen, Tundish-Dauerfutter

Anwendungstemperatur

> 1550 °C

	Bindung	MgO %	Al ₂ O ₃	SiO ₂	CaO %	Fe ₂ O ₃	Anwendungs- beispiele
Rhema GS4	anorganisch- chemisch	92,5	1,6	3,0	1,5	1,0	E-Öfen, Pfannen
Rhemag CPS*	anorganisch- chemisch	90,0	0,9	2,4	1,6	1,0	E-Öfen Ausmauerungen, Pfannenschnauzen, Abstichrinnen
Rhenit 166	hydraulisch	-	70,0	20,0	2,3	2,5	Tundish-Dauerfutter

^{*} $Cr_2O_3 = 1.8 \%$

Mörtel

Anwendung

Verteiler, Schieberkassetten, Pfannendauerfutter

Anwendungstemperatur

> 1600 °C

Rhemabond 82

	Bindung	MgO %	Al ₂ O ₃ %	SiO ₂ %	CaO %	Fe ₂ O ₃ %	Anwendungs- beispiele
Rhenit TM 97	chemisch	-	93,7	5,3	0,1	0,2	Tundishreparaturen
Rhemabond 82	chemisch	88,0	2,0	5,0	2,0	1,5	Schieberkassetten
Rhebond 74 H	hydraulisch	-	77,0	13,0	3,5	1,1	Pfannendauerfutter
Rhebond 80 R	keramisch	-	73,0	19,8	0,9	1,9	Pfannendauerfutter

Hinterfüllmassen

Rhenit B 8

Anwendung

Pfannen, Stahlgießpfannen, Verteiler, Konverter, E-Öfen

Anwendungstemperatur

> 1600 °C

	Bindung	MgO %	Al ₂ O ₃ %	SiO ₂ %	CaO %	Fe ₂ O ₃ %	Anwendungs- beispiele
Rhemasit M 90/3	organisch- chemisch	90,0	1,5	3,5	2,0	1,5	Pfannen, Verteiler
Rhemasit M 90 B	chemisch	90,0	1,0	3,6	1,8	1,2	Hinterfuellmasse Pfannen
Rhemadur TN4	anorganisch- chemisch	87,0	1,0	4,5	2,0	2,0	Konverter
Rhemasit GX	organisch- chemisch	85,0	1,0	5,0	2,0	1,5	Pfannen
Rhemadur GT	organisch	84,0	2,5	5,0	5,0	3,5	Konverter, Pfannen, E-Öfen
Rhemasit M 90/3 CSZ	anorganisch- chemisch	80,0	3,0	4,5	3,0	2,0	Pfannen
Rhenit B 8	chemisch- keramisch	-	85,0	7,5	1,0	1,5	Pfannen

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.

Stampfmassen

Rhemadur GT

Anwendung

Konverter, Pfannen, Verteiler, Vorwärmer E-Öfen, Roheisenpfanne, Pfannenrand

Anwendungstemperatur

> 1600 °C

	Bindung	MgO %	Al ₂ O ₃ %	SiO ₂ %	CaO %	Fe ₂ O ₃ %	Anwendungs- beispiele
Rhemag 95 XH	organisch- chemisch	94,5	0,5	1,4	1,8	1,6	Pfannen
Rhedo 803	keramisch	44,0	3,5	5,0	44,0	3,0	Konverter, Pfannen
Vorwärmermasse	ohne	> 35,0	4,0	5,0	< 55,0	3,0	Vorwärmer E-Öfen
Rhenit 85 ST	keramisch	-	86,0	9,0	0,3	1,5	Lochsteine
Rhenit TSR-PT 85	chemisch	-	83,0	7,0	-	1,5	Verteiler, Pfannen
Rhenit 76 ST	keramisch	-	76,0	17,5	0,6	1,7	Roheisenpfannen
Rhenit 65 plast	keramisch	-	65,0	30,0	0,4	1,5	Pfannenrand

(Stand 05/2012 - aktuelle Werte auf www.horn-co.de) - Informationen zu Lieferformen siehe Seite 42.

Körnungen

Standardkörnungen

Körnung 3 - 6 mm

Körnung 6 - 10 mm

Sonderkörnungen

Körnungen auf Kundenwunsch

Lieferformen

Lose (Schüttgut)

Silofahrzeug

Big Bags Lieferbar mit abgedichteten Nähten, mit / ohne Auslauf

Säcke auf Palette

Lieferbar als Papier-Säcke oder PE-Säcke

Sonderverpackung nach Kundenwunsch

Lieferbar z. B. in Kisten, Kartonagen oder Container

Stichwortverzeichnis

Alu-Carbon R 77	12	Rhecal 40	29	Rhenit SP 87 L	33
Alu-Carbon R 82Z6	13	Rhecal 60	27	Rhenit SP-CH	33
Andalusit R 59	13	Rhecal A58M29S6	28	Rhenit SP-KM	33
Andalusit R 61	14	Rhecal A75	28	Rhenit SP L10	33
ASC R 68	14	Rhedo 803	39	Rhenit TK4	34
AZS R Z30N4	15	Rhemabond 82	37	Rhenit TM 97	37
AZS R Z35	15	Rhemadur GT	38	Rhenit TSR-PT 85	39
Bauxit R 76	16	Rhemadur TN4	38	Schamotte R 35	20
Bauxit R 79	16	Rhemag 95 XH	39	Schamotte R 44	21
Beta-Tonerde R	17	Rhemag CPS	36	Schleudermasse M	32
Chromkorundschlacke R	17	Rhema GS4	36	Schleudermasse MCR	32
Dolomit R	6	Rhemagun C4	32	SiC R 70	21
Feuerleichtstein R	18	Rhemagun MA-IV 90/95	32	TE 80	26
Forsterit R	6	Rhemagun MA-IV CS	32	TE 85	26
Kohlenstoff R	18	Rhemagun TSWK	32	TE 90	27
Korund R 88	19	Rhemagun VN-S 90/95	32	Vorwärmermasse	39
Korund-Spinell R	19	Rhemasit GX	38		
Mag-Carbon R 86A9	7	Rhemasit M 90/3	38		
Mag-Carbon R 90A3	7	Rhemasit M 90/3 CSZ	38		
Mag-Carbon R 90A6	8	Rhemasit M 90 B	38		
Mag-Carbon R 92A2	8	Rhenit 43 RW	35		
Magnesia-Chrom R 59Cr18	10	Rhenit 65 plast	39		
Magnesia-Forsterit R 68	11	Rhenit 70 CN	35		
Magnesia R 82F7	9	Rhenit 76 N	34		
Magnesia R 90	9	Rhenit 76 ST	39		
Magnesia R 92	10	Rhenit 80 G	34		
Magnesia-Spinell R 85A7	11	Rhenit 85 ST	39		
Magnesia-Zirkon R 75Z9	12	Rhenit 95 M	34		
MgO 55	24	Rhenit 166	36		
MgO 75	24	Rhenit A0/G	34		
MgO 80	25	Rhenit B 8	38		
Mullit R	20	Rhenit CK 14	35		
Rhebond 74 H	37	Rhenit ISO 78	33		
Rhebond 80 R	37	Rhenit KBS	34		
Rhecal 10	25	Rhenit SP 47 ISO	33		

www.horn-co.de

Verwaltung Siegen: Herrenfeldstr. 12 · 57076 Siegen · Fon: +49 271 77205-0 · Fax: +49 271 73421 Werk Weitefeld: Langenbacher Str. 21 · 57586 Weitefeld · Fon: +49 2743 9356-0 · Fax: +49 2743 9356-28 Werk Wenden: Otto-Hahn-Str. 2 · 57482 Wenden-Hünsborn · Fon: +49 2762 98380 · Fax: +49 2762 983823 Werk Dillingen: Dillinger Hütte – Halde II · 66763 Dillingen/Saar · Fon: +49 6831 79260 · Fax: +49 6831 79559 Labor Wenden: Otto-Hahn-Str. 2 · 57482 Wenden-Hünsborn · Fon: +49 2762 9740-0 · Fax: +49 2762 9740-11 Labor Wetzlar: Buderusstr. 25 · 35576 Wetzlar · Fon: +49 6441 381985-0 · Fax: +49 6441 381985-9